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Abstract 

While the popularity and widespread availability of the drone benefits photography and pilot 

enthusiasts, the errant use of drones poses risks of espionage, safety, and even criminal 

activities. It is thus pertinent for authorities to be alerted to cases of unauthorised flying and 

have an effective means of detecting drones. This paper will evaluate the effectiveness of a 

convolutional neural network (CNN) model for the detection of drones in varied conditions 

and how resilient the technique is against false positives due to birds and planes. The CNN 

model that we will be focusing on in this paper is the pytorch-based YOLOv5 model.  

 

Introduction 

Drones pose risks of espionage when flown over restricted areas such as military bases and 

government buildings, safety risks and disruption to air traffic when flown near airports and 

last but not least criminal activities when flown near borders and in vicinity of prisons. The 

airspace in these sensitive areas requires close monitoring and immediate action to provide 

protection against errant drones. Thus an effective means of drone detection is a valued 

capability for authorities.  

 

Today the most effective means to detect drones are by far radar systems as they have the 

longest detection range with reasonable accuracies. But they too can be prone to mistakes and 

mis-detect birds and other similar cross-sections objects as drones instead. In addition, to take 

immediate action, operators need visual information of the drone, to decide upon the most 

appropriate course of action. Radars cannot provide visual information and thus a camera 

system would instead look in the direction designated by the radar and a CNN-based detector 

will scan and provide the visual information to the operators. 

 

There are many CNN-based detectors, however the YOLO (You Only Look Once) algorithm, 

stands out due to its high inference throughput. The model only needs one-pass to detect the 

presence of drones and it is very suited for real-time applications. However, the model does 

face certain challenges in accurately detecting drones due to distractor objects such as birds 

and planes. The distance of the object to the camera system and the background clutter are  key 

factors that determine the resultant accuracy in a YOLO model. 

 

For this project, we will use the fifth edition of the YOLO model, YOLOv5 from the internet 

herein referred to as the base model and a transfer learnt variant of the YOLOv5 model by 

DSTA herein referred to as the DSTA model. DSTA did transfer learning by feeding thousands 

of images of DJI mavic and phantom models onto the base model. In this paper, we will 

evaluate the performance of the base model and the DSTA model on the false positives due to 

birds and planes across varying distances and environments. We will also attempt to train our 

own variation of the YOLOv5 model for detection of drones. 
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Part I: Evaluation of Drone Detection Models 

 

Methodology 

Our methodology was as follows. We first curated an image dataset by sourcing for drones, 

birds and planes images from the internet, artificially generating them using a simulator and 

physically going down to specific locations in Singapore to capture the required footage. We 

then annotated each image to specify the location of the drone in the image where it contained 

a drone and nil where it did not. The details of our annotation process is described in Part 3. 

This was followed by categorising the image dataset into 9 bins sorting them according to the 

distance the subjects, the drones, birds and planes were from the camera and type of the 

background i.e. skies, trees or urban clutter that the image  constituted of. We then ran the base 

and DSTA model against all 9 bins to arrive at scores to denote the effectiveness of the models. 

The details of our scoring process is described in Part 2. Lastly we analysed and provided our 

evaluation on how well the models dealt against birds and planes. 

 

We went to significant locations such as MBS, Sentosa and Gardens by the Bay to gather 

images of birds and drones. In order to arrive at a varied dataset, we captured images at sunrise 

as well as sunset and positioned ourselves such that the subjects were captured at varied 

distances and backgrounds. A varied dataset would prevent any instances of underfitting and 

overfitting. Underfitting refers to the model not having enough information to effectively 

discern objects while overfitting refers to biases in the model.  

 

The images gathered were of high resolution 1080p and the inference was to be done on a RTX 

5000 GPU laptop. We thus used the “x6” configuration of the base and DSTA model for the 

evaluation. 

 

            Figure 1.1: Mavic model                                           Figure 1.2: Phantom model  

 

This section describes how the dataset was categorised and sorted into 9 bins. We had 2 

variables as mentioned, i) the distance the subjects were from the camera and ii) type of the 

background the image constituted of. There were three values for each variable and permuting, 

resulting in 9 bins. The three values for the distance variable were a) <10m, b) 10-40m and c) 

>40m. The three values for the background variable were a) sky, b) trees and c) urban. We 

ensured that each bin contained approximately 60% of only drones, 20% of birds and drones, 

10% of only birds. Figure 1.1 and 1.2 shows the type of drones that were in the bins.  

 

Some of the bins did not have enough images of the “birds and drones” and “only birds”. This 

was because capturing birds flying in real life was opportunistic. As such, we did not have 

enough data for some bins. To resolve this, we synthetically imposed silhouettes of birds into 

urban and tree backgrounds. We took pictures of forested areas and buildings around Singapore 

and artificially added birds in. This was done on the software Canva. We also removed images 

that were too similar to each other in all the bins. This is to achieve as much variation as 
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possible in terms of camera angle, background etc, as well as to prevent overfitting. After this 

step, we achieved an average of about 30 images in each bin, with the bin with the lowest 

number of images had 20 images, while the bin with the highest number of images had 50 

images.  

 

Another challenge was estimating the distance the subjects were from the camera. To help us 

sort the images into the 3 distance categories, we estimated the pixel size of the object in each 

of the images as we took these photos ourselves. This was also one of the challenges we faced 

as we could not determine whether the drones in some of the images were far away enough to 

be 40m and above away from the camera. To resolve this challenge, we made reference to a 

ratio method.  

 

1) 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑟𝑜𝑛𝑒 𝑖𝑛 𝑝ℎ𝑜𝑡𝑜 =
𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑑𝑟𝑜𝑛𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑟𝑜𝑛𝑒 𝑓𝑟𝑜𝑚 𝑐𝑎𝑚𝑒𝑟𝑎
 ×

 𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜 

2) 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑟𝑜𝑛𝑒 =  𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑜𝑓 𝑝ℎ𝑜𝑛𝑒 / 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑟𝑜𝑛𝑒 𝑖𝑛 𝑝ℎ𝑜𝑡𝑜  
 

 

Part 2: Calculating statistical data 
Scoring 

Precision refers to the number of times the model was correct while recall refers to the number 

of times the model missed a drone. Here are the Precision and Recall’s mathematical 

definitions: 

 

 
Figure 2.1: Mathematical Definitions 

 

We made use of the Precision and Recall to compute an mAP score. The mAP stands for mean 

average precision, and it ranges between 0 to 1. A score closer to 1 indicates a more accurate 

model. 

 

Hypothesis 

We had the following hypothesis: 

1) As the distance of the drone from the camera increases, the mAP score will decrease 

exponentially.  

2) Drones located in a clear sky background will also be the most accurately detected 

compared to that of tree and urban backgrounds.  

3) The DSTA model will have a significantly higher mAP score for all 9 bins compared 

to that of the base model as the DSTA model was trained to detect mavic/phantom 

drone models. 

 

 

 

 

mAP 
score 
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Results & Data  

 

 Sky background Urban background Tree background 

<10m 10-40m >40m  <10m 10-40m >40m  <10m 10-40m >40m 

Drone 

mAP 

score 

Base 

model 

0.872 0.780 0.713 0.673 0.473 0.393 0.745 0.547 0.485 

DSTA 

model 

0.945 0.792 0.717 0.710 0.489 0.401 0.783 0.587 0.493 

Table 2.1 

 
Figure 2.2 

 
                Figure 2.3             Figure 2.4 

 
      Figure 2.5             Figure 2.6 
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Figure 2.7 

 

Discussion 
 

Hypothesis 1 

Firstly, we realised that as the distance of the drone from the camera was increased, the mAP 

score of the drone decreased on a rather linear scale for both models (see figure 2.2, 2.3, 2.4 

above). For example, for the sky background (see figure 2.2) , the base model recorded a 0.159 

mAP score difference, which was an 18.2% drop, whereas the DSTA model had a bigger mAP 

score drop of 24.1%. 

 

This matched our hypothesis, which we suspect was because the further the drone was in the 

picture, the smaller the pixel size of the drone. Thus, it was harder for both models to 

distinguish a drone from a black dot in the image, which led to more false negatives being 

generated. Moreover, since the drone was further away from the camera, the drone was also 

mistaken more easily for distractor objects, such as birds, which also led to more false positives 

being generated. 

 

We also realised that as the distance of the drone from the camera was increased, there was a 

greater mAP score drop for tree and urban backgrounds compared to sky backgrounds. The 

DSTA model recorded a mAP score drop of 43.5% and 37.0% in urban and tree backgrounds 

respectively, which was significantly higher than the mAP score drop of 24.1% in the sky 

background. The base model recorded a mAP score drop of 41.6% and 34.9% in urban and tree 

backgrounds respectively, which was also higher than that of 18.2% drop in the sky 

background. We think the reason for this trend was because when drones are captured further 

away from the camera, it was even harder for the model to distinguish features of the drones, 

which may blend in with the trees or buildings in the background. Moreover, we realised that 

the DSTA model recorded a higher mAP score drop in all 3 backgrounds compared to the base 

model. This could possibly be due to overfitting in the <10m proximity range, which rendered 

the DSTA model unable to detect drones from further ranges as efficiently.  

 

Hypothesis 2 

Secondly, the mAP scores for sky backgrounds was comparably higher than the mAP score for 

urban and tree backgrounds for both models (see figure 2.5, 2.6, 2.7 above). When the drone 

was placed against a tree or urban background, the presence of trees and buildings created a 

silhouette, causing the drone, which was also black, to blend in with the trees and buildings 

respectively. This caused the drone to not be easily detected as the features of the drone, such 

as the blades of the drone, were unanimous with the background colour. Thus, even though the 

drone could be near the camera (such as 0-10m), the mAP score was still lower than that of a 

sky background.  
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Hypothesis 3 

Thirdly, the DSTA model had an overall better performance compared to the base model. 

Across all 9 categories, the DSTA model had a higher mAP score than that of the base model. 

This was because the DSTA model was better in detecting mavic/phantom drone models as 

compared to the base model. As such, it was easier for the DSTA model to detect distinct 

features of the mavic/phantom drones even in rough backgrounds where distractor objects such 

as trees and buildings were present. Here are some side-to-side comparisons: 

 

However, we observed that the mAP score for the DSTA model was comparably better than 

the base model for the <10m range for all 3 ranges. For the 10-40m and >40m categories, the 

DSTA model only did slightly better than that of the base model. We suspect this was because 

the DSTA model was only trained for the <10m ranges and for detecting drones in images at 

close range. Moreover, since the DSTA model was mainly trained to distinguish between mavic 

and phantom drones, it was thus unable to detect drones at further distances from the camera 

as effectively.  

 

Presence of false negatives 

A problem we faced was the mAP scores for certain bins were below 0.50, which means the 

model has a drone detection rate of less than 50%. We realised that this trend occurred the most 

in the urban background bins – 10-40m and >40m, as well as the >40m tree background bins 

for both models. When we looked at the images returned after training, we realised that there 

were numerous false negatives in both models (see figure 2.8 & 2.9 below). The bins of the 2 

lowest mAP scores both belonged to the 40m and above urban background. This was possibly 

due to the underfitting in this particular bin as we struggled to capture sufficient images in real 

life of drones >40m away from the camera. As such, we had to synthetically impose all the 

images in this bin, which formed the smallest bin of only 20 images.  

 

      
       Figure 2.8: DSTA Model               Figure 2.9: Base Model 

         No Drone Detected          No Drone Detected 

 

Presence of false positives 

A challenge we faced was also the distractor objects present in our dataset. As our dataset is 

20% birds and drones and 10% birds, many false positives were generated, especially when the 

birds and drones were placed near each other, which may have confused both models 

respectively, causing false classification of birds as drones. When looking at the images after 

being run through the models, we realised that an average of 30% of detected drones were 

actually birds. The bin with the highest number of false positives was the 10-40m urban 



 

7 

background bin, with an average of 40% of detected drones actually being birds. We suspect 

this was due to the fact that the drone was well camouflaged in the buildings, whereas the birds 

were flying in the sky, causing them to stand out compared to the drones.  

 

Part 3: Labelling of Drone Detection Model 

 

In our attempt to improve the DSTA model, we trained our labelled dataset using the weight 

of the DSTA YOLOv5x6 model as well as the weight of the transfer learnt model. We also 

included the distractor objects such as birds, kites and planes in most of these images so that 

the model is trained to not detect such objects 

 

Methodology 

After understanding the performance of the model on each type of bin, the final step was to 

improve the model. To do this, we uploaded all our datasets we collected from Part 1 of the 

project onto roboflow which is a software that helps to annotate images for computer vision 

models. As we understood that a larger dataset would provide a better trained model, our image 

dataset was a total of 1400 images. Our dataset included 500 images from all 9 bins from Part 

1 of this project, as well as images of drones, birds and planes that were found online, which 

made the rest of the 900 images in the dataset. 

 

After uploading the datasets, we then proceeded to manually apply bounding boxes to images, 

with 70% assigned for training the YOLO model, 20% assigned for validation and 10% 

assigned for testing the model. The 9 bins which make up about 150 images were part of the 

test set. The test set were images which have never been seen before by the model which was 

where the accuracy of the model was tested. To make the labelling of the images efficient and 

accurate, we had 3 different labels, namely drones, birds and planes. This was so that when we 

applied the bounding boxes, the model was able to recognise the different features in each label.  

 

Some challenges that arose when we were labelling the data was we realised that there was not 

enough variation of images for some labels. For example, most images on the internet that 

showed planes flying in the sky were taken from high up above the clouds where the plane was 

flying. As such, we could not find many images online where planes flying in the sky were 

taken from a bottom-up angle and taking real time pictures would be opportunistic and time 

consuming. To resolve this, we tried to synthetically impose planes flying on clear sky images 

to get various angles of the plane. Moreover, another challenge was the sheer amount of data 

we had to manually label. Since our image dataset was 1400 images, it was rather tedious for 

us to manually apply bounding boxes for every single label in all the images. 

 

When generating different versions using our image datasets, we made use of image 

augmentation (see figure 1.3 & 1.4 below), which increased the diversity of the images 

included in the database. Image augmentation included changing different settings of the 

images, such as blur, brightness, exposure, grayscale – changing the image to be black & white, 

as well as noise. The purpose of this was to mimic the disruptions a drone in real life would 

face.  Adjusting such settings of the images in the dataset assisted with overcoming photometric 

distortion while random flipping, scaling, cropping, and rotating were used to overcome 

geometric distortions. This step was implemented to improve the robustness of the object 

detection model. This resulted in an increase in the variability of images so that an unknown 

environment will not create any issues for the detector model, such as false positives, false 

negatives etc.  
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                     Figure 3.1: Augmented image                     Figure 3.2: Augmented image 

           with noise and blur                                    with noise and exposure      

 

Part 4: Custom Training of Data 

 

We then moved on to do some of our own transfer learning on the DSTA YOLOv5x6 model. 

In order to train our dataset, we did some programming on Google Colab and made use of a 

Python script. First of all, in order to be able to train our dataset, we had to import certain 

softwares such as PyTorch, OS, Cuda as well as install dependencies.  

 
#clone YOLOv5 and 

!git clone https://github.com/ultralytics/yolov5  # clone repo 

%cd yolov5 

%pip install -qr requirements.txt # install dependencies 

%pip install -q roboflow 

 

import torch 

import os 

from IPython.display import Image, clear_output  # to display images 

 

print(f"Setup complete. Using torch {torch.__version__} 

({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() 

else 'CPU'})") 

 

Next, we had to import our Roboflow project over to Google Colab. In order to do this, we 

exported the Roboflow project in a zip file, as seen from the code below. 

 
from roboflow import Roboflow 

rf = Roboflow(api_key="kzkXoHRzrjMvnIMsXtWf") 

project = rf.workspace("yolo-bv4k3").project("drone-detection-rmyxm") 

dataset = project.version(34).download("yolov5") 

 

Then, we moved onto training the datasets obtained from roboflow by determining the image 

size, batch size and number of epochs. This was one of the more time consuming aspects of 

the project as a greater number of epochs(Eg. 200) would result in a greater amount of time(1.5 

Hours) being spent. This was the code we used for training the dataset:  
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!python train.py --img 416 --batch 16 --epochs 200 --data 

{dataset.location}/data.yaml --weights yolov5s.pt --cache 

 

A challenge we faced while trying to train our dataset was that whenever we tried to increase 

the number of epochs to over 300, the training would not be executed as we would get an error 

that ‘Cuda out of memory’. We suspect this was because the number of epochs was too large 

and the computers we were using did not have sufficient RAM to be able to train a dataset this 

large over 300 times. In order to solve this problem, we tried to run our entire script in our 

computers Command app. When we tried this, it was even more time-consuming and took 20 

minutes to train 1 epoch. As such, due to the limitation in resources, we decided to just keep 

the number of epochs to less than 300.  

 

After training the data, we used tensorflow to visualise the progress of the training using graphs. 

In our best trial, the model averaged at an mAP score of 0.910. This was an improvement 

compared to the results we got from evaluating the base model and the DSTA model. The 

training of the model of over 200 epochs can be seen in the graph below:  

                  Figure 4.1: Tensorflow graph visualisation of training for 200 epochs 

 

Finally, we viewed the model’s predictions on the test pictures which have never been seen by 

the model before. This would help us get a visual understanding of the reliability of the model 

and what improvements have to be made. We then compared these results with the results we 

obtained from the original yolov5 models, the transfer learnt model and reattempted the process 

till we made improvements. 

 

Figure 4.2      Figure 4.3 
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We realised that both the models, namely the DSTA model and the model that we have trained,  

performed similarly and managed to even detect drones that were at a range of 40-50 metres 

away from the camera. Some examples can be seen above.  

 

Conclusion 

Overall, there were several learning points in our research at DSTA. Firstly, we learnt about 

the importance of curating data for machine learning projects. The quality of the data is as 

important as the quantity of the data which was why we spent greater time focusing on the 

gathering of data. The data classified into the bins will have a severe impact on the results as 

well. We also learnt about the impacts of underfitting and overfitting in a real life scenario 

which required us to do multiple rounds of testing. Decreasing underfitting and overfitting  

would allow the model to perform more optimally and increase its reliability as well. As for 

future work, we could continue improving the model we had trained by gathering more relevant 

data and figuring out the effect specific augmentations have on the results. 
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